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M
etallic nanoparticle dimers have
attracted considerable research
interests because their plas-

monic properties can be controlled by tun-

ing the intraparticle or interparticle

distance.1�5 On the one hand, the plasmon

hybridization model, an electromagnetic

analogue of molecular orbital theory, has

been proposed and used to explain qualita-

tively and intuitively the plasmon reso-

nance splitting in metal nanoshells and

spherical metallic nanoparticle dimers.2,4

On the other hand, some experiments have

shown that flat nanodisk dimer arrays ex-

hibit an abrupt transition and a splitting of

the plasmon resonance energy when vary-

ing the interparticle separation within the

pairs from dielectric proximity (nontouch-

ing dimers) to conductive contact (overlap-

ping dimers).3 Subsequent numerical stud-

ies performed for overlapping spherical

dimers have confirmed these experimental

observations.5 However, the transition be-

tween these two regimes has remained un-

clear because of the singularity arising in

the limit of touching dimers.

Recently, transformation optics has

proven to be an efficient and elegant tool

to study analytically the optical response of

complex nanostructures with structure

singularities.6�11 A broad-band response

and a huge field enhancement have been

predicted for kissing nanowires,6,7 which

might find applications in single-molecule

detection,12 surface-enhanced Raman scat-

tering (SERS),13 and high-harmonic genera-

tion.14 However, the ultra-broad-band fea-

ture displayed by these nanostructures

highly relies on their structure singularities,

which imposes a severe challenge on the

fabrication of these devices. From an experi-

mental point of view, a system of overlap-

ping nanowires without any structural sin-
gularity is more realistic. Such a geometry
could, for example, consist of dimers touch-
ing in more than one point fabricated via
annealing. The bluntness of singularities in
such plasmonic nanostructures and its im-
pact on their optical response have not
been addressed so far.6�9 Recently, Bora et
al. have successfully fabricated closely
packed parallel gold nanowire arrays with
a gap distance of a few tens of nanometers
as tunable plasmon resonant cavities.15 This
work might design a path toward the ex-
perimental realization of overlapping
nanowires.

In this paper, we analytically and numeri-
cally investigate the plasmonic interaction
between overlapping nanowires with and
without structure singularities. Note that
there has been in the past some analytical
work about interacting nanowires,16�18 but
the authors failed somehow to provide a
physical interpretation of their analytical
calculations and did not point out the con-
tribution of surface plasmons. In this article,
the conformal transformation strategy is
used to derive the optical response of
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ABSTRACT The plasmonic interaction between overlapping nanowires with and without structure

singularities is studied analytically and numerically. A conformal transformation approach is adopted to predict

analytically the optical response of overlapping nanowires in the quasi-static limit. Surface plasmon excitations

are shown to exhibit a lower bound cutoff frequency, which blue-shifts when the overlap distance increases.

Between this cutoff and the surface plasmon frequencies, overlapping nanowires are capable of a strong and

broad-band harvesting of light. This band gap feature is shown to be robust to radiative losses and to the bluntness

of the structure singularities. Hence, the light harvesting performance of overlapping nanowires would not be

damaged by nanofabrication imperfections. These remarkable features might be beneficial to the realization of

plasmonic band gap filters.

KEYWORDS: plasmonics · transformation optics · broad-band light harvesting ·
band gap filters · nanofocusing · overlapping nanowires
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overlapping nanowires in the quasi-static limit. This ap-
proach provides both a qualitative and quantitative
analysis of the propagation of surface plasmons in such
singular structures. The system of overlapping nanow-
ires is shown to be closely related to the case of metal-
lic tips or wedges.9 Surface plasmon excitations are
shown to exhibit a lower bound cutoff frequency, which
blue-shifts with increasing overlap distance. Our ap-
proach allows one to describe theoretically the smooth
transition between the ultra-broad-band response of
kissing nanowires6,7 and the highly resonant feature of
a single metallic nanoparticle. Below a certain critical
frequency, the induced electric field exhibits a diver-
gence at these singularities. Then, the effect of radia-
tive losses is investigated by means of numerical simu-
lations. Even when the structure dimension becomes
comparable to the wavelength the band gap proper-
ties of the device are conserved. At last, the issue of the
structure singularities is addressed. Slightly rounding
off the singularities does not modify significantly the
cutoff absorption behavior predicted theoretically, pro-
vided that the overlap distance is not too small. The
light harvesting performance of overlapping nanow-
ires is thus quite robust relative to potential sample im-
perfections. On the contrary, the divergence of the
field predicted analytically disappears as soon as the
singularities are blunted. Nevertheless, the field en-
hancement induced by a nonsingular nanostructure
can still be significant.

RESULTS AND DISCUSSION
Theory. In this section, conformal mapping is adopted

to solve analytically the overlapping nanowires prob-
lem. It consists in finding a conformal transformation
that maps the overlapping nanowires problem onto a

simple plasmonic slab geometry. The corresponding
transformation is first described and allows to describe
qualitatively the physics of the propagation of surface
plasmons in overlapping nanowires. Then the problem
is solved in the slab frame, which allows to deduce the
optical response of overlapping metallic nanowires with
equal size in the quasi-static limit. The light harvesting
and nanofocusing properties of this device are dis-
cussed in detail.

Conformal Transformation. Our canonical system is an ar-
ray of line dipoles aligned along the y-axis placed be-
tween periodic metallic films of thickness 2(� � �0) (Fig-
ure 1a). This system is repeated along the y-direction
with a period 2�. Now apply the following conformal
transformation

where z � x � iy and w � u � iv are the usual com-
plex number notations. The transformed material con-
sists of a wedge structure whose vertex is at the origin.
The vertex angle is of 2�0 (Figure 1b). With regard to the
transformation of the source, the array of dipoles is
transformed into a single dipole �= � ro� aligned along
the u-axis and placed at the point wo � �ir0. Note that
this transformation has been already widely studied in
ref 9. The pair of overlapping cylinders can be derived
by applying the following conformal transformation to
the wedge-like structure (see Figure 1c)

where z= � x= � iy= is the usual complex number nota-
tion. The diameter of the two cylinders is given by

The overlap distance � between the two cylinders can
be expressed as

The contact area � between the two cylinders is given
by

We also define a key parameter

which is the ratio between the contact area � and the
diameter of the cylinders, D.

The dipole �= � r0� is transformed into a uniform
electric field in the transformed geometry,6�9

Figure 1. Periodic metallic slabs of thickness 2(� � �0) separated
by vacuum layers of thickness 2�0 can support surface plasmons
that couple to an array of line dipoles �. These dipoles are ori-
ented along the y-direction, and the array pitch is 2�. (b) Trans-
formed material (a) following eq 1 is a wedge-like plasmonic
structure with a vertex angle 2�0. The array of dipoles, �, is trans-
formed into a single dipole, �=, oriented along the u-axis. (c)
Transformed material (b) following eq 2 is a pair of overlapping
cylinders of diameter D, with an overlap distance � and area of
contact �. The dipole source �= is transformed into a uniform
electric field E=0.

w ) ro exp(z) (1)

z' ) g2

w + iro
) g2

ro(exp(z) + i)
(2)

D ) g2

ro sin θ0
(3)

δ ) D(1 - cos θ0) (4)

Σ ) D sin θ0 ) g2

ro
(5)

F ) Σ
D

) sin θ0 (6)

E'0 ) ∆
2πε0

ro

g2
ex' (7)
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with ex= the unitary vector along the x=-axis. Under the
quasi-static approximation, this uniform electric field
can be taken as due to an incident plane wave in the
near-field of the nanostructure. We make the choice of
an incident electric field E=0 polarized along x=. Actually,
this polarization is by far more efficient to excite sur-
face plasmon modes than a transverse polarization
(along y=).6,7 Note that, in the literature, most of the ex-
perimental works dealing with metallic nanowires con-
sider surface plasmons propagating along the nanowire
axis,15 contrary to the configuration studied here. We
shall assume that the dimensions of the cylinders pair
is sufficiently small such that surface plasmon modes
are well described in the near-field approximation. In
this case, the dielectric properties of the nanostructure
are the same as those of the slab from which it is de-
rived. Also preserved under the transformation is the
electrostatic potential.

The mathematics of the conformal transformation
closely links the physics at work in each of the very dif-
ferent geometries (Figure 1). Solving the relatively trac-
table slab problem solves the overlapping nanowires
problem. It also provides a physical picture for the
propagation of surface plasmons in overlapping
nanowires. As shown by Figure 1c, surface plasmons
are excited on the two diametrically opposite sides of
the overlapping nanowires. As they propagate along
the nanowires, their wavelength and velocity decrease
until vanishing at the structure singularities. This leads
to a drastic field enhancement in the vicinity of these
singularities and even to its divergence if dissipation
losses are moderate, as we will see in the following.
After this brief qualitative account, we now present the
details of our analytical calculations, solving first the
problem in the slab geometry.

Coupling of Each Dipole to Surface Plasmons Supported by Periodic
Metallic Films. The coupling of each dipole to the stack of
metallic films is first addressed (Figure 1a), assuming
that the Laplace’s equation is obeyed. This problem has
already been addressed in a more general case by Luo
et al.9 Here, the symmetry of the system makes the
problem simpler and allows one to derive more con-
cise and accessible analytical results.

The position of the nth dipole along the y-axis is yn

� (2n � 1)�/2. As the system is 2�-periodic along the
y-direction, we can solve the problem for ��0 	 y � yn

	 2� � �0, and we will then deduce the solution in all
of the space. Each dipole � consists of two line charges.
We wish to calculate the potential 
 induced by the me-
tallic sheets surrounding this dipole. This can be done
by expanding the incident field 
o of the nth dipole as
a Fourier series in x:


o(k) can be found by making a Fourier transform at

an arbitrary position y:

The next step of our calculation consists of deriving

the field 
(k) induced by the metal slabs surrounding

the dipole. Due to the odd parity of the incident poten-

tial 
o(k) relative to the dipole position yn and the sym-

metry of the system, the induced field 
(k) is also of odd

parity relative to the dipole position. As illustrated by

Figure 2, this field can be expressed as follows:

The two unknowns b(k) and c(k) are then determined

by the boundary conditions at the metallic slab inter-

face (y � yn � �0). They derive from the conservation of

the parallel component of the electric field and of the

normal component of the displacement field

Solving these two equations provides the following re-

sults, using the expression of a(k) (eq 9)

Figure 2. Sketch of the partial waves present in the structure around
the nth dipole � located at y � yn.

φo(x, y) ) - 1
2πε0

∆(y - yn)

x2 + (y - yn)2
)

1
2π ∫ dkφ0(k)eikx, for |y - yn| < θ0 (8)

φo(k) ) ∫ φo(x, y)e-ikydy )

a(k)sgn[y - yn]e-|k||y-yn|, with a(k) ) - ∆
2ε0

(9)

φ(k) )

{b(k)e-|k|(y-yn) - b(k)e|k|(y-yn), for|y - yn|<θ0

c(k)e-|k|(y-yn) - c(k)e|k|(y-yn+1), for θ0 < y - yn < 2π - θ0

(10)

a(k)e-|k|θ0 + b(k)(e-|k|θ0 - e|k|θ0) ) c(k)(e-|k|θ0 - e-|k|(2π-θ0))

a(k)e-|k|θ0 + b(k)(e-|k|θ0 + e|k|θ0) ) εc(k)(e-|k|θ0 + e-|k|(2π-θ0))

b(k) )

- ∆
4ε0

exp(- |k|θ0)[ε - tanh(|k|(π - θ0))]

cosh(|k|θ0)[tanh(|k|(π - θ0)) + εtanh(|k|θ0)]
(11)
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The dispersion of the excitations can be found from

the condition that b(k) and c(k) diverges

This equation cannot be solved analytically. Neverthe-

less, two asymptotic solutions can be derived

where we have introduced, �c, a threshold value for

the permittivity

This threshold value is of particular importance for

a metal of permittivity � 	 �c, and no surface plasmon

modes can be supported by the stack of metal slabs.9

This is confirmed by Figure 3 which shows the disper-

sion relation of SPPs derived from eq 13. For this figure

as well as in the following of this section, the metal is as-

sumed to be silver with a surface plasmon frequency

�sp � 3.67 eV and permittivity taken from Johnson and

Christy.19 The dispersion curve displays two branches

of surface plasmon excitations, namely, the even

branch for � 	 �sp and the odd branch which spans

the frequency range �sp 	 � 	 �p (with �p as the bulk

plasmon frequency). However, contrary to a finite

metal�instulator�metal structure, the periodicity of

the system induces here a lower bound cutoff fre-

quency, �c, which arises when Re{�} � �c. Figure 3

shows that the two asymptotic solutions of the disper-

sion relation (eqs 14 and 15) provides an analytical so-

lution over a major part of the spectrum.

Now that the condition of divergence for the coeffi-

cients b(k) and c(k) have been derived, the potential

can be solved in the real space. An inverse Fourier trans-

form of the induced potential derived in the k-space

leads to the solution in the real space

To perform this integration, we write

The analytic structure of eq 17 is shown in Figure 4.

There are two branch cuts running from � i� and � i�,

ensuring the analytical continuity of the integrand. The

integral is dominated by the poles close to the real

axis which correspond to surface plasmon modes carry-

ing away energy to infinity. The cuts correspond to

lossy or creeping surface waves which, if � is real, dissi-

pate no energy.10 Therefore, in the limit of real �, our ex-

pression for dissipation will be exact, but otherwise

only approximate. From now on, we will only consider

the frequency band below the surface plasmon fre-

quency, � 	 �sp, for which � 	 �1. Actually, beyond

�sp, the imaginary part �I of the metal permittivity be-

comes comparable to its real part �R, and the contribu-

tion from the cuts shown in Figure 4 is no longer

negligible.

The calculation of the integral in eq 17 leads to

Figure 3. Dispersion curve.

Figure 4. Analytic structure of the integrand of eq 17. There
are two cuts running from � i� and � i� (blue line). There are
also two poles if 	 	 0 (blue disks). If 	 
 0, these poles vanish
in the cuts and give no contribution.

c(k) )

- ∆
4ε0

exp(|k|π)
cosh(|k|θ0)cosh(|k|(π - θ0))[tanh(|k|(π - θ0)) + εtanh(|k|θ0)]

(12)

tanh(|k|(π - θ0)) ) -εtanh(|k|θ0) (13)

kpθ0 ) �3(ε - εc)

ε - εc
3

, for|kp|θ0 , 1,

i.e., when Re{ε} f εc (14)

kpθ0 ) 1
2

ln(ε - 1
ε + 1), for|kp|(π - θ0) . 1,

i.e., when - εc|ln(ε - 1
ε + 1)| . 1 (15)

εc )
θ0 - π

θ0
(16)

φ(x, y) ) - 1
2π

×

{∫ 2b(k)sinh(|k|(y - yn))eikxdk, for|y - yn| < θ0

∫ 2c(k)e-|k|πsinh(|k|(y - yn - π))eikxdk, for θ0 < y - yn < 2π - θ0

(17)

|k| ) lim
δf∞

(k2 + δ2)1/2
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The expression of � that will be useful in the following

can be simplified considering the asymptotic limits of

kp (eqs 14 and 15)

From the expression of the induced potential 
 for |y

� yn| 	 �0 (eq 18), we can deduce the electric field in-

duced by the metal slabs on each dipole

The electric field induced at the dipoles is of particular

interest, since it directly provides the energy dissipated

in the surface plasmon mode.

Absorption Cross Section. As shown by previous studies,7,8

energy dissipation is the same in the slab and trans-

formed geometries. The dipole energy pumped into

surface plasmons in the metal slabs (Figure 1a) maps di-

rectly onto the power absorbed by the overlapping cyl-

inder pair from the incident electric field E=0 in the

transformed frame (Figure 1c):

If we inject the expression of E(z � 0) (eq 24) into the

last equation, replace � and g2/ro with E=0 (eq 7) and �

(eq 5) and renormalize it by the incoming flux Pin �

�0c0|E=0|2/2, we can derive the absorption cross section

�a � Pa/Pin of the overlapping cylinders pair

where k0 � �/c0 is the wavenumber in vacuum. This ex-

pression of �a can be made more explicit by consider-

ing the asymptotic limits of kp (eqs 14 and 15) and �

(eqs 22 and 23) and by replacing � and � by D and �

(eq 6)

The first asymptote of �a (eq 27) displays a square-root

singularity at the cutoff frequency �c, for which Re{�}

� �c. The second asymptote (eq 28) applies for larger

frequencies than �c and is strictly identical to the ex-

pression derived for kissing cylinders.6,7 Figure 5a dis-

plays the absorption cross section of overlapping

Figure 5. (a) Absorption cross section 
a (eq 26) normalized by the
physical cross section Do as a function of � and frequency for an over-
lapping cylinders’ pair of size Do � 20 nm. The white dashed line rep-
resents the low-frequency cutoff �c. The white continuous line repre-
sents the frequency �o (eq 34). The color bar is in log scale. (b) Same
quantity is displayed as a function of frequency for different values of
� � 0.1 (blue), 0.2 (green), and 0.4 (red). The low-frequency asymptote
(colored dots, eq 27) is displayed for each value of �. The high-
frequency asymptote (black dots, eq 28) is also shown and corre-
sponds to the kissing cylinders case (� � 0). At last, the single cylin-
der case is also shown for comparison20 (cyan continuous line). For
both panels, the metal is assumed to be silver with a surface plasmon
frequency �sp � 3.67 eV and permittivity taken from Johnson and
Christy.19

φ(|y - yn|<θ0) ) i
∆

2ε0θ0
Γsinh[kp(y - yn)]eikp|x|

(18)

with Γ )
εcosh-1(kpθ0)exp(-kpθ0)[1 + tanh(kpθ0)]

ε - εc + ε(εεc - 1)tanh2(kpθ0)
(19)

φ(θ0 < y - yn < 2π - θ0) )

i
∆

2ε0θ0
Γ'sinh[kp(y - yn - π)]eikp|x| (20)

with Γ' )
cosh-1(kpθ0)cosh-1(εckpθ0)

ε - εc + ε(εεc - 1)tanh2(kpθ0)
(21)

Γ ∼ -2
ε

ε - εc
when Re{ε} f εc (22)

Γ ∼ 1 when - εc|ln(ε - 1
ε + 1)| . 1 (23)

E(z ) iyn) ) -∇φ ) -i
∆

2ε0θ0
Γkp (24)

Pa ) -ω
2

Im{∆∗ex·E(z ) iyn)} (25)

σa ) 2π2k0
Σ2

θ
Re{kpΓ} (26)

σa ∼ π2√3k0
F2

arcsin2(F)
D2Re{� εc

1 - εc
2

1

√ε - εc
}

when Re{ε} f εc (27)

σa ∼ π2k0
F2

arcsin2(F)
D2Re{ln(ε - 1

ε + 1)}
when - εc|ln(ε - 1

ε + 1)| . 1 (28)
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nanowires normalized by the overall physical cross sec-

tion Do � 2D � � as a function of frequency and the ra-

tio � between the contact area � and the nanowire di-

ameter D. Figure 5b displays the frequency dependence

of �a/Do for different values of �. The two asymptotes

derived in eqs 27 and 28 are also shown on that graph.

As shown in Figure 5, the absorption spectrum is

strongly dependent on the overlap distance between

the two nanowires. Actually, the ratio � � �/D is directly

related to the angle of contact �0 between the two

nanowires (eq 6), which governs the cutoff frequency

�c (eq 16). A squeezed metallic wedge (�0 ¡ 0) can sup-

port surface plasmon modes over a broad-band spec-

trum (�c ¡ 0), whereas large angles �0 imply an ex-

tremely narrow line width (�c ¡ �sp). Hence, three

distinct regimes can be distinguished:

● Kissing cylinders regime (� ¡ 0): this regime has

already been widely studied previously.6,7 The

absorption spectrum of kissing nanowires

corresponds to the high-frequency asymptote

derived in eq 28 (see Figure 5b). In that case, the

cutoff frequency �c is zero and the absorption cross

section displays a continuous and broad-band

absorption spectrum over the whole visible and

near-infrared spectra.

● Overlapping regime (0 	 � 	 1): when the angle of

contact �0 (or �) increases, the cutoff frequency �c

blue-shifts, which limits the bandwidth of the light

harvesting process. An absorption peak is observed

around �c, and its line shape is well-predicted by eq

27 for � 	 �c. When � ¡ �sp, the device behaves

like kissing cylinders (eq 28) in terms of light

harvesting (see Figure 5b). The comparison stops

here since the electric field distribution is on the

contrary dramatically different between kissing

and overlapping cylinders, as we will see later.

Anyway, for small overlap (� 	 0.5), the absorption

spectrum exhibits an interesting light harvesting

feature with a flat and broad-band absorption

spectrum between �c and �sp.

● Single nanowire regime (� ¡ 1): when � ¡ 1, the

two nanowires merge into a single one. The

absorption spectrum exhibits then one sharp

resonance at the surface plasmon frequency �sp

(see Figure 5b).

In contrast to the kissing nanowires (� � 0), over-

lapping nanowires show a clear-cutoff frequency �c in

their absorption spectrum. This cutoff frequency can be

adjusted by tailoring the overlap distance between the

two nanowires. This opens nice perspectives for the de-

sign of plasmonic band gap filters.

Electric Field in the Transformed Geometry. Under the confor-

mal transformation, the electrostatic potential is pre-

served. The electric field E=(x=, y=) in the transformed ge-

ometry can then be easily deduced from the potential

derived in the slab geometry

Using the expression of the potential 
 given in eqs

18�20, the electric field E= can be expressed as a func-

tion of E=0 (eq 7), � (eq 5), and �0:

● For |z= �(D � � � i�)/2| 
 D/2 or |z= �(D � � �

i�)/2| 
 D/2 (i.e., outside the cylinders):

Figure 6. Distribution of the electric field in overlapping cylinders for r � 0.2 shown at different frequencies. (a) Absolute
value of the electric field |E=| normalized by the incoming field |E0�| (polarized along x=). The color scale is logarithmic and re-
stricted [1 
 103], but note that the field magnitude can larger especially at the vicinity of the structure singularity where
the electric field diverge for the left and middle columns. (b) Amplitude of the real part of E=x= normalized by the incoming
field E=0 (polarized along x=). The color scale is linear and restricted to [�10 10], but note that the field magnitude can by far
larger especially at the structure singularity.

E'x' ) -∂φ'
∂z'

∂z
∂x'

- ∂φ'

∂z'∗
∂z'/

∂x'
) -∂φ'

∂z'
- ∂φ'

∂z'∗

E'y' ) -∂φ'
∂z'

∂z
∂y'

- ∂φ'

∂z'∗
∂z'∗

∂y'
) -i

∂φ'
∂z'

+ i
∂φ'

∂z'∗
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● For |z= �(D � � � i�)/2| 	 D/2 or |z= �(D � � �

i�)/2| 	 D/2 (i.e., inside the cylinders):

where � corresponds to the sign of y= � i�/2. Note

that in the near-field approximation, which holds when

the dimensions of the structure are less than the wave-

length, the enhancement of electric field is indepen-

dent of the size of the system. Figure 6 shows the re-

sult of our analytical calculation of the electric field for

overlapping cylinders with � � 0.2 at different

frequencies.

The first column of Figure 6 corresponds to the

field obtained at � � �c. In that case, the field is ex-

tremely confined and intense in the vicinity of the struc-

ture singularities (z= � 0 and z= � �i�), that is, the

points where the two nanowires merge. Actually, the

field diverges at these locations.9 This can be shown by

taking a careful look at the expression of the electric

field (eqs 29�32). Let us consider as an example the ex-

pression of E=x= outside the nanowires (eq 29). The terms

within the brackets are the products of two different

powers of z=. The first one scales as z=�2 and accounts

for the geometrical compression of surface plasmons

when they approach the structure singularity. It may

lead to the divergence of the electric field at this loca-

tion. The second one, scaling as (1 � i(�/z=))�ikp�1, de-

scribes the propagation and attenuation of surface plas-

mons when they propagate along the nanowires’

surface. At the structure singularities, the product of

these two terms will diverge if and only if

Considering the high-frequency limit of kp (eq 15), the

field divergence condition can be rewritten as

The term on the left is directly related to the dissipa-
tion losses in the metal with the imaginary part of the
permittivity. The term on the right is the vertex angle
which accounts for the field compression at the struc-
ture singularities. Let us introduce �o the frequency for
which the two terms of the last equation are equal. Be-
low �o, eq 34 is checked: the compression factor domi-
nates over dissipation losses and the field diverges at
the structure singularities. Beyond �o, eq 34 is no longer
verified: the dissipation losses are large enough to make
the field vanish at the structure singularities. �o and �c

are shown as a function of � and are superimposed to
the absorption spectrum in Figure 5a. The comparison
between the two curves shows that the frequency �o is
clearly larger than the cutoff frequency �c and that
both frequencies blue-shift with the overlap distance.
The divergence of the electric field occurs over most of
the overlapping nanowires’ bandwidth.

The second column of Figure 6 confirms this diver-
gent feature by showing the field at a frequency � �

0.84�sp for which �c 	 � 	 �o. Note that, at such fre-
quency, the absorption spectrum follows the kissing
cylinders asymptote (see Figure 5b). However, the elec-
tric field distribution in the near-field of the nanowires
is completely different compared to a kissing cylinders
configuration. In the latter case, the electric field always
vanish at the structure singularity.6,7 For overlapping
nanowires, the field exhibits a divergent feature similar
to what happens in metallic tips or wedges.9 At last, the
third column of Figure 6 shows the electric field at �

� �sp. In that case, dissipation losses are important and
make the electric field decrease when surface plas-
mons approach the structure singularity. The electric
field then spreads spatially over the whole nanowire
surface.

This divergent feature at the singularities of the
nanostructure is interesting for theoreticians but does
not really make sense experimentally. First, the nonlo-

Figure 7. Comparison between theoretical (solid lines) and
simulated (dots) absorption cross sections normalized by the
physical cross section Do as a function of frequency for an
overlapping nanowires’ pair of size Do � 20 nm with differ-
ent values of � � 0 (black), 0.1 (blue), 0.2 (green), 0.5 (red),
and 0.75 (cyan). The metal is assumed to be silver with per-
mittivity taken from Palik.22
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cal properties of the permittivity at small length scales

will prevent the electric field from increasing to infin-

ity.21 Second, this divergent feature highly relies on the

singularities of the nanostructure which will never be

perfectly reproduced in experiments. Hence, a numeri-

cal study is also needed to check the validity of our ana-

lytical approach and its range of application.

Numerical Simulations. This section deals with a numer-

ical study of the overlapping nanowires system and its

confrontation with our analytic theory. The numerical

method is described in details in the Methods section.

The interest of the conformal transformation approach

in dealing with singular structures is first highlighted by

showing that numerical simulations cannot reach the

same degree of precision as our analytic results. The ef-

fect of radiative losses is then investigated when the

structure dimension becomes comparable to the wave-

length. The influence of the structure singularities is

also studied. Interestingly, the numerical simulations

show that slightly rounding off the structure singulari-

ties from overlapping nanowires does not change sig-

nificantly the cutoff absorption behavior predicted by

theory, provided that the overlap distance is not too

small (� � 0.5). Not surprisingly, the divergent feature

of the field enhancement is suppressed when structure

singularities are blunted. However, numerical simula-

tions show that it can still be drastic even in presence

of sample imperfections.

Quasi-static Limit. Figure 7 compares the analytical and

numerical absorption cross sections obtained for an

overlapping nanowires’ pair of size Do � 20 nm with dif-

ferent values of �. For such dimension, the near-field ap-

proximation is valid.10 Note that for this figure as well

as in the following of the study, the silver permittivity

is now taken from Palik data22 and no longer from

Johnson and Christy19 as in Theory. Actually, we have

been unable to make the simulations converge with

Johnson and Cristy data because of the strong diver-

gence of the electric field at the structure singularities.

On the contrary, the silver dielectric function from the

Palik data22 has a larger imaginary part in the frequency

range of interest, which implies more dissipation losses

and a less dramatic singular feature. Nevertheless, slight

oscillations are still visible in the simulated absorption

spectra for small values of � compared to theory (see

Figure 7). These numerical difficulties highlight the im-

portance of developing analytical approaches to deal

with such singular structures.

Radiative Losses: Negligible Absorption and Strong Scattering below

the Cutoff Frequency. The radiative losses, which are not

taken into account in the conformal transformation ap-

proach, are now investigated by means of numerical

simulations. As shown in a previous study,10 these radia-

tive losses mainly originate from the lossy surface

waves, whose contribution cannot be derived analyti-

cally in the case of overlapping nanowires. The absorp-

tion and scattering cross sections of overlapping

nanowires have been computed numerically for differ-

ent structure dimensions at � � 0.5 (see Figure 8). The

results show that radiation damping becomes impor-

tant for D � 30 nm. The absorption cross section falls

compared to the quasi-static prediction: the theory pre-

dicts a scaling of �a as D2 (eq 27), which is clearly not

the case for D � 30 nm (see Figure 8a). Interestingly, the

band gap feature of overlapping nanowires is con-

Figure 8. Simulated absorption cross section 
a (a) and
scattering cross section 
s (b) normalized by the physical
cross section Do as a function of frequency for overlapping
nanowires’ pairs with a constant � � 0.5 but different diam-
eters, D � 10 (purple), 30 (red), 100 (blue), and 150 nm
(cyan). For both panels, the metal is assumed to be silver
with permittivity taken from Palik.22

Figure 9. Simulated absorption cross section 
a normalized
by the physical cross section Do as a function of frequency
for an overlapping nanowires’ pair with blunted singulari-
ties compared to theoretical predictions that have involved
singularities in the calculations. The two singularities of the
nanowires’ pair have been removed by inserting two circles
of 0.2 nm radius as shown in the inset. The area enclosed be-
tween these circles and the nanoparticles are then filled
with metal. The structure has a total dimension of Do � 20
nm with different values of � � 0.2 (blue), 0.5 (green), and
0.75 (red).
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served even in presence of radiative losses. Figure 8a
shows that the best light harvesting efficiency is ob-
tained for cylinder diameter around 30 nm. The radia-
tive spectrum also exhibits a pronounced cutoff behav-
ior for D � 30 nm (see Figure 8b). On the contrary, for
larger overlapping nanowires (D � 100 and 150 nm),
the radiative losses significantly increase below �c,
while the absorption losses are still negligible. Since sur-
face plasmon modes are not excited in overlapping cyl-
inders below �c, most of the energy is scattered and
not absorbed by the metallic nanowires.

Influence of Nanofabrication Imperfections on Light Harvesting. To
be more realistic from an experimental point of view,
the structure singularities of the overlapping nanoparti-

cles are now slightly blunted in the numerical simula-

tions. To that aim, two cylinders are inserted between

the overlapping nanoparticles as shown in the inset of

Figure 9. The triangle-shaped areas enclosed between

the two nanowires, and these cylinders are filled with

metal, which results in two smooth arcs that connect

the two nanowires instead of two singular points. Fig-

ure 9 compares the absorption cross sections of these

overlapping nanowires with the theoretical prediction.

One can see that the bluntness of the structure singu-

larities does not change significantly the cutoff absorp-

tion behavior for large overlap distances (� � 0.5),

which means that our theory initially developed for per-

fect overlapping nanowires is still effective in this case.

The discrepancy between simulation and theory for the

smaller overlap distance (� � 0.2) is explained by the

fact that the response of overlapping nanowires at low

frequencies (� 	 0.5�sp) relies on very sharp geometric

features: the field is much more confined at low fre-

quencies6 and any slight deviation from the initial ge-

ometry may prevent surface plasmons from being ex-

cited. Hence, if we want plasmonic devices efficient in

the red part of the visible spectrum, strong constrains

have to be imposed on the nanofabrication process.

The effect of the size of the nanofabrication imper-

fections is investigated in Figure 10. The absorption

cross section of 10 nm diameter overlapping nano-

wires is shown for different radius a of the inserted

circles for � � 0.5. As displayed by Figure 10, the ab-

Figure 10. Normalized absorption cross section 
a as a
function of frequency and the radius a of the two circles
which are tangential to the overlapping cylinders’ pair as
shown in the inset. The cylinders pair of 10 nm diameter D
has a constant value of � � 0.5 (blue). The arrows indicate
the cutoff frequency of absorption for each device.

Figure 11. Amplitude of the real part of Ex=� (a) and Ey=� (b) normalized by the incoming field E0� (polarized along x=) at a fre-
quency of � � 0.84�sp for an overlapping nanowires’ pair of 10 nm diameter D and � � 0.5 with singularities blunted by tan-
gentially inserting two circles of 0.2 and 1.0 nm radii around the two crossing points of two cylinders as shown in the inset.
The color scale is linear and restricted to [�20 20] (corresponding to dark blue and dark red, respectively), but note that the
field magnitude can be by far larger, especially near the overlap area.
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sorption cross section exhibits a robust cutoff response

for a sample imperfection a/D � 0.01, though two indi-

vidual resonances emerge on both sides of the absorp-

tion band. Larger imperfections (a/D � 0.2) implies a

blue-shift of the cutoff frequency as indicated by the ar-

rows in the figure. The control of sample imperfections

is thus important to obtain a stable performance in light

harvesting within the absorption band of overlapping

nanowires.

Influence of Nanofabrication Imperfections on Nanofocusing. As al-

ready pointed out previously above, the induced elec-

tric field may be divergent at the structure singularities

for perfect overlapping nanowires. The bluntness of the

singularities is expected to suppress this divergent fea-

ture. Figure 11 displays the electric field distributions for

overlapping nanowires of 10 nm diameter D and � �

0.5 with a sample imperfection a � D/50 (left column)

and a � D/10 (right column). The induced electric field

is no longer divergent in absence of structure singular-

ities and the field enhancement decreases with the size

of the sample imperfection. However, both E=x= and E=y=

still show a significant field enhancement. For instance,

at a frequency of 0.84 �sp, a maximum field enhance-

ment of 60 is obtained for a sample imperfection a �

D/50 (see Figure 11a).

CONCLUSION
As a conclusion, conformal transformation theory

has proven to be an elegant and powerful tool to pre-
dict analytically the optical response of overlapping
nanowires in the quasi-static limit. Surface plasmon ex-
citations in overlapping nanowires are shown to exhibit
a lower bound cutoff frequency, which blue-shifts when
the overlap distance increases. This cutoff response
might open perspectives for the realization of plas-
monic band gap filters. A divergent electric field distri-
bution around structure singularities has also been pre-
dicted even in the presence of dissipation losses.
Numerical simulations have confirmed the validity of
our theory in the quasi-static limit. When structure di-
mensions become comparable to the wavelength, over-
lapping nanowires keep their band gap feature de-
spite the radiative losses. At last, the unavoidable
imperfections inherent in a nanofabrication process
have been tested numerically. Slightly rounding off the
structure singularities from overlapping nanowires
does not significantly alter the cutoff absorption behav-
ior for structures with large overlap distances but of
course eliminate the divergent behavior of the electric
field distribution. Nevertheless, a strong nanofocusing
of light is still possible even when the structure singu-
larities are slightly blunted.

METHODS
All numerical simulations have been performed by means of fi-

nite element method implemented in COMSOL Multiphysics soft-
ware. Two dimensional simulations were performed within the har-
monic propagation analysis mode in frequency domain. A plane
wave with x=-polarized electric field was introduced to the simula-
tion area in y=-direction (see the definition of coordinates in Figure
1b). The convergence of the numerical calculations with respect
to the perfect-match-layer (PML) thickness, total simulation area,
and mesh size has been checked. It was found that a PML thick-
ness of 40 nm was sufficient to absorb the scattered fields at the
simulation domain boundaries. A total simulation area above 4
�m2 was considered for the largest nanostructures studied in this
work. The highly non-uniform and extremely fine mesh sides below
10�6 nm were used in order to model accurately the propagation
of electromagnetic fields at the crossing points between two
nanowires. Although optimal and rigorous conditions have been
adopted in the simulations, the divergence problem cannot be
completely eliminated for overlapping nanowires of small � due
to the fact that the electric field is actually divergent at these struc-
ture singularities, thereby leading to the slight oscillations in the ab-
sorption spectra as shown in Figure 7.

Acknowledgment. D.Y.L. and S.A.M. acknowledge support by
the UK Engineering and Physical Sciences Research Council
(EPSRC). A.A. and J.B.P. acknowledge support by the European
Community project PHOME (Contract No. 213390). Y.L. acknowl-
edges the Lee family scholarship for financial support.

REFERENCES AND NOTES
1. Kottmann, J. P.; Martin, O. J. F. Plasmon Resonant Coupling

in Metallic Nanowires. Opt. Express 2001, 8, 655–663.
2. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A

Hybridization Model for the Plasmon Response of
Complex Nanostructures. Science 2003, 302, 419.

3. Atay, T.; Song, J.-H.; Nurmikko, V. Strongly Interacting
Plasmon Nanoparticle Pairs: From Dipole�Dipole
Interaction to Conductively Coupled Regime. Nano Lett.
2004, 4, 1627–1631.

4. Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I.
Plasmon Hybridization in Nanoparticle Dimers. Nano Lett.
2004, 4, 899–903.

5. Romero, I.; Aizpurua, J.; Bryant, G. W.; Garcı́a de Abajo, F. J.
Plasmons in Nearly Touching Metallic Nanoparticles. Opt.
Express 2006, 14, 9988–9999.

6. Aubry, A.; Lei, D. Y.; Fernandez-Dominguez, A. I.;
Sonnefraud, Y.; Maier, S. A.; Pendry, J. B. Plasmonic Light
Harvesting Devices over the Whole Visible Spectrum.
Nano Lett. 2010, 10, 2574–2579.

7. Lei, D. Y.; Aubry, A.; Maier, S. A.; Pendry, J. B. Broadband
Nano-Focusing of Light Using Kissing Nanowires. New J.
Phys. 2010, 12, 093030.

8. Aubry, A.; Lei, D. Y.; Maier, S. A.; Pendry, J. B. Broadband
Plasmonic Device Concentrating the Energy at the
Nanoscale: The Crescent-Shaped Cylinder. Phys. Rev. B
2010, 82, 125430.

9. Luo, Y.; Pendry, J. B.; Aubry, A. Surface Plasmons and
Singularities. Nano Lett. 2010, 10, 4186–4191.

10. Aubry, A.; Lei, D. Y.; Maier, S. A.; Pendry, J. B. Conformal
Transformation Applied to Plasmonics beyond the Quasi-
Static Limit. Phys. Rev. B 2010, 82, 205109.

11. Aubry, A.; Lei, D. Y.; Maier, S. A.; Pendry, J. B. Interaction
between Plasmonic Nanoparticles Revisited with
Transformation Optics. Phys. Rev. Lett. 2010, 105, 233901.

12. Nie, S.; Emory, S. R. Probing Single Molecules and Single
Nanoparticles by Surface-Enhanced Raman Scattering.
Science 1997, 275, 1102.

13. Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod.
Phys. 1985, 57, 783–826.

14. Kim, S.; Jin, J.; Kim, Y. J.; Park, I. Y.; Kim, Y.; Kim, S. W. High-
Harmonic Generation by Resonant Plasmon Field
Enhancement. Nature 2008, 453, 757.

A
RT

IC
LE

VOL. 5 ▪ NO. 1 ▪ LEI ET AL. www.acsnano.org606



15. Bora, M.; Fasenfest, B. J.; Behymer, E. M.; Chang, A. S-P;
Nguyen, H. T.; Britten, J. A.; Larson, C. C.; Chan, J. W.; Miles,
R. R.; Bond, T. C. Plasmon Resonant Cavities in Vertical
Nanowire Arrays. Nano Lett. 2010, 10, 2832.

16. McPhedran, R. C.; Perrins, W. T. Electrostatic and Optical
Resonances of Cylinder Pairs. Appl. Phys. 1981, 24,
311–318.

17. McPhedran, R. C.; Milton, G. W. Transport Properties of
Touching Cylinder Pairs of the Square Array of Touching
Cylinders. Proc. R. Soc. A 1987, 411, 313–326.

18. Radchik, A. V.; Smith, G. B.; Reuben, A. J. Quasistatic Optical
Response of Separate, Touching, and Intersecting Cylinder
pairs. Phys. Rev. B 1992, 46, 6115–6125.

19. Johnson, P. B.; Christy, R. W. Optical Constants of the
Noble Metals. Phys. Rev. B 1972, 6, 4370–4379.

20. Bohren, C. H.; Huffman, D. R. Absorption and Scattering of
Light by Small Particles; John Wiley & Sons, Inc.: New York,
1983.

21. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters;
Springer: Berlin, 1995.

22. Palik, E. D. Handbook of Optical Constants of Solids;
Academic: New York, 1991; Vol. II.

A
RTIC

LE

www.acsnano.org VOL. 5 ▪ NO. 1 ▪ 597–607 ▪ 2011 607


